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ABSTRACT

Filter radiometers sensitive from 280 to 320 nm and from

280 to 400 nm, respectively, were used for measurements of
the actinic flux in the stratosphere. Since the instruments are
calibrated for absolute spectral sensitivity the data can be

compared with model calculations of the actinic flux. Data
were obtained during seven balloon flights during the

European Arctic Stratospheric Ozone Experiment (EASOE).

1. INTRODUCTION

Photodissociation caused by the ultraviolet solar radiation

is an important process controlling the chemistry of many
short lived species in the stratosphere. E.g., the photolysis of
ozone by solar radiation at wavelengths below 320 nm

03 + hv _ O(1D) + 02 (X < 320 rim) (1)

provides the major source of excited O(1D) atoms which
generate OH which in turn initiate many oxidation processes
in the atmosphere. The partitioning of NOx species is forced

by photochemistry, e.g. the photodissociation of NO2:

NO2 + hv ---, NO + O(3p) (L < 400 nm) (2)

The diurnal variation of chlorine species in. the stratosphere is

also a result of photodissociation by ultraviolet light as the
photodissociation of the CIO dimer, HOCI, C12, OCIO, BrCI,
CIONO2, and others.

In order to interpret measurements of these key species in

the stratosphere, usually photodissociation frequencies
calculated by radiative models are used. In this paper, a
measurement technique is presented which enables in-situ
observations needed to validate model calculations of

photoactinic fluxes in the stratosphere as well as the
interpretation of simultaneous measurements of short lived
species. Measurements using this technique were carried out
during seven balloon flights during the Arctic winter in the
course of the European Arctic Stratospheric Ozone Experiment

(EASOE) in 1991/92.

2. EXPERIMENTAL

Filter radiometers to measure the photoactinic flux were
developed in our laboratory, mainly for tropospheric use
(Junkermann et al., 1989; Brauers and H_)fzumahaus, 1992).

They are equipped with an optical input system gathering

radiation from 2m sr solid angle in order to achieve a sensi-
tivity independent of the direction of incident radiation. The
radiation is detected by UV-phototubes. The spectral sensi-
tivity of the radiometers is defined by optical filters and the

sensitivity of the phototubes.
In order to study different photochemical processes,

radiometers sensitive at two different wavelength intervals
were used: Figure 1 shows the spectral sensitivity of the UV-
B radiometer which is equipped with an interference filter of
12 nm full width at half maximum peaking at 300 nm and a

solar blind phototube (Hamamatsu R 1384). As discussed
previously (Junkermann et al, 1989), it is essential to use a
solar blind detector in combination with a highly blocking
interference filter to suppress radiation from longer
wavelengths and hence to be sensitive in the UV-B spectral

region only. Instead of photomultiplier tubes which are used
for the instruments for tropospheric measurements, the

balloon-borne instruments are equipped with phototubes with
a subsequent electrometer amplifier with an amplification

factor of 109 to 1011. They have the same spectral sensititvity,

however, and they provide substantial lower weight. The
instruments are temperature stabilized in order to avoid a
thermal drift of the dark current and a spectral shift of the
transmission of the interference filter.
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The sensitivity of the second type t_f radiometers ranges
fr<)m 2N0 to 400 nm. The radiation is detected by an UV-

photodiodc (Hamamatsu R 488-2) in combination with filter
glass (Sch()tt UG11). The spectral sensitivity is shown in
Figure 2. The exact shape of the sensitivity curve at

wavelengths below 280 nm is uncertain, but duc to the low
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numberofphotonsthesewavelengthsmakeanunsignificant
contributiontotheoverallsignaloftheradiometer.
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Absolute spectral sensitivity of the near UV radio-
meter on the photon flux

During a balloon flight, four instruments are mounted on
a gondola, one of each type gathering radiation from the
upward hemisphere and from the downward hemisphere,
respectively (Figure 3a). This configuration enables the

separate measurement of the upward and the downward
component of the photon flux. Although the instruments are
mounted outside of the main gondola shadowing by the other

experiments and by the suspension of the payload occurs. Due
to the rotation of the gondola the direct incidence of sunlight is
often inhibited. Therefore, the data have to be processed with
regard to this shadowing as discussed below. During some
flights, only one instrument of the near UV type (280 - 400
nm) was mounted piggy back on the balloon payload
gathering light between 15 ° above the horizon and the earth
(Figure 3b). For high zenith angles occuring at the twilight

conditions during EASOE the directly incoming sunlight can
be detected during each turn of the gondola when the
instrument points towards the sun.

The data are recorded by an on-board data logger and can

be - as an option - additionally transmitted to the ground
station. The four instruments are integrated together with this

computer and the power supply in a thermically isolated box.
The mass of the entire box is 20 kg.
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3. CALIBRATION

The instruments can be calibrated in two ways: First, they

can be calibrated for absolute spectral sensitivity on the
incoming photon flux which is the suitable calibration for a

comparison with model calculations of the solar flux.
Secondly, the instruments can be calibrated for photo-
dissociation frequencies which provides an independent check
of the first calibration method and allows a direct comparison

with measurements of trace gases.

3.1 Calibration for absolute spectral sensitivity

The relative spectral sensitivity r(k) of the radiometers
was determined using a spectrograph and a tungsten halogen

tamp. r(z.) was corrected for the spectral characteristic of the
system spectrograph-lamp which was measured using a
calibrated photodiode.

In a second step, the signal U of the instruments was
measured when exposed to the broadband radiation of an
absolutely spectrally calibrated tungsten halogen lamp:

U = A .fr(x). I(z.) d), (3)

I(;_,) is the spectral irradiance of the calibrated tungsten halogen
lamp incident to the detector and A is the factor which refers
the relative sensitivity r(k) to the absolute sensitp.'ity S(_.) of
the detector:

S(k) = A. r(k) (4)

Hence the absolute sensitivity can be determined for each
radiometer calculating the integral in (3) and measuring U.

In Figure 1 and 2, S(X) of an UV-B and a near-UV
instrument are presented. For the UV-B instrument, the
relative sensitivity r(X) of both the upward and the downward

pointing radiometcr agree nearly for all wavelengths. In the
UV-B spectral region, significantly lowcr intensity of the
upward flux which includes the direct radiation from the sun
only at zenith angles higher than 90 ° is expected. Therefore,
the electronic amplification of the radiometer pointing to the

bottom whose spectral sensitivity is shown in Figure 1
exceeds that of the radiometer mcasuring light from the upper
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hemispherebyafactorof 2(1.Theabsolutesensitivityofthe
radiometersofthencar-UVtypeisapproximatelythesamefor
allinstrumentsusedduringEASOE,andtherelativespectral
sensitivityamongoneanotherisshiftedbylessthan1rim.

3.2 Calibrationforphotodissociationfrequencies

Usingacalibrationoftheradiometersagainstachemical
actinometcr,anindependentcheckof thecalibrationfor
absolutespectralsensitivitycanbecarriedoutwhen
simulatingthesignalsof thephotoelectricdetectorswith
modelcalculationsofthesolarfluxasdescribedbelowand
comparingthemwithphotodissociationfrequenciescalculated
withthesamealgorithm.

Thespectralsensitivityofbothtypesofradiometersis
adaptedtophotoactinicspectra,thatoftheUV-Binstrumentto
thephotoactiniespectrumPI(;QofozoneyieldingO(ID)via
reaction(1)andthatof thenearUVinstrumentto the
photoactinicspectrumP2(_'0ofNO2(reaction(2)).The
photoactinicspcclraPI(;QandP2(Z.)aredefinedbythe
productoftheabsorptioncrosssectionofozoneandNO2,
respectively,andthequantumyieldof thecorresponding
reaction.Fortheidealcase,if thespectralsensitivityS(X)of
theradiometersdependslinearilyonthephotoactinicspectrum
PI(;<)orP2(i,.)forallwavclenghtsk

SO.) - const. P(z) (5)

the signal of lhc detector U becomes lincarily dependent on the

photodissc_ciation frequency PF

u : f s0,.) F(_.)d;,. =
constant .f P(a). F0,. ) dk = constant . PF (6)

F(;'0 is the photon flux of the sun.
For several reasons the matching between S(X) and P(3,.)

can be rcalized only approximatively and hence relation (5)
bccomcs valid only for a limited wavelength interval or for

specific experimental conditions. In the case of the UV-B
detector, liar zenith angles smaller than 85 ° light below 295 nm

contributes to the O(tD) production via (1) in the stratosphere
at which wavelengths (5) is no longer valid for the detectors
used. Moreover, P(;_) is a function of the temperature due to

the dependence of the quantum yield in particular for reaction
(1) which cannot be compensated by S(X). Therefore, the
factor between the signal U and the photodissociation
frequency in equation (6) becomes a function of several

parameters as the temperature and the solar flux and hence the
zenith angle and the column abundance of ozone.

Nevertheless, in a first approximation the signals of both

types of radiometers can be related directly to photo-
dissociation frequencies of reaction (1) and (2), respectively.
The calibration factors will be determined by comparison with

chemical actinomctem (Junkermann et al, 1989; Hofzumahaus

et al., 1992) this summer and be characterized for the
corrections discussed above.

4. MODEL CALCULATIONS OF THE SOLAR FLUX

For Ihe simulation of the signals of the photoelectric
detectors two dilTcrent models are in use. For a first inter-

pretation of the measurements during the campaign, a fast but
less accurate algorithm is applied. This model is based on a
three beam approximation and was developed to run on a

personal computer. A description of this model is can be
found in R6th (1992).

The final simulation of the signals of the radiometers is
carried out with a multi beam model which runs on a Cray

XMP (R6th et al., 1992). This model calculates up to 20
different beams of the solar flux each representing the

diffusive light in a cone shell distinguished by their angles
against the vertical. The model is based on a line-by-line
algorithm with a variable spacing between the considered
wavelengths. In the UV-B spectral region, the spacing is less
than 1 nm.

The model first calculates the collimated beam coming

directly from the sun. This direct radiation is diminished by
absorption by 02, 03, and NO 2, by Rayleigh scattering on air
molecules and by Mie scattering on aerosols and cloud
droplcts. With these absorption and scattering processes, the

direct photon flux Fd is given by Bcer-Lambert's law

dFd = +('Cabs+ "tscat) ' Fd ' ds (7)

with ds the pathlength within a given layer d, and 'Cthe optical

depth of the layer.
The photons are scattered into the different diffusive

bcams according to a phase function Pij. The fluxes of these
beams arc also decreased by absorption and scattering. But, in

contrast to the direct radiation, they gain photons by the
scattering processes from the other rays. Thus, a source
function term Q has to be added to the Beer-Lambert's law

dFi = -('tabs+*scat)'Fi'dsi+Qi'dsi (8)

with

Oi = E Fj '-cscat' Pij " P.i (9)p-j
l

and gi the cosine of the individual zenith angle.
The differential equation system can be solved for one

layer of thickness ,xz if it is assumed that the layer is
homogeneous in respect to the absorbing and scattering

processes. Additionally, the source function should be
constant within the layer which is realistic if the thickness
does not exceed 1 km. As the source function couples the

different fluxes the integrated equation system has to be

solved by an iterative method.
The multi beam model has the advantage that it

determines the actinic flux incident on the radiometers from
different directions. Therefore, it is possible to simulate the

signals of the radiometers looking upwards and downwards,
respectively (Figure 3a), even if their field of view is slanted
against the vertical (Figure 3b).

The algorithm calculates the radiation considering full
spherical geometry including refraction. This feature is
important in order to calculate photon fluxes at high zenith
angles during twilight at which most of the measurements
were carried out.

Exactly the same algorithms used to simulate the
measurements can be applied for determining photodisso-
elation coefficients. Therefore, if the signals of the

radiometers are represented correctly by the model, the
photodissociation frequencies calculated with the same

program should be correct likewise as far as the photoactinic
parameters of the species are known.

5. HELD MEASUREMENTS

During the European Arctic Stratospheric Expedition

(EASOE) in the winter 1991/92 the instruments were flown
on seven balloon flights launched from Kiruna (68°N, 22°E)
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listedinTable1.Datawereobtainedforzenithanglesbetween
68°and95° uptoaltitudesof32km.Theinstrumentswere
operatedsuccessfullyduringall flights.Thedataof the
EASOEmissionswillbepresentedbySchilleretal.(1992).

date
Dec5,91
Jan22,92
Jan31,92
Feb5,92

Mar5,92
Mar12,92

Mar20,92

confi_:uration
1nearUV
1nearUV
1nearUV
2UV-B

2nearUV
1nearUV
2UV-B

3nearUV
2UV-B

2nearUV

max.altitude
25km
30km
32km
33km

30km
29km

32km

zenithangles
93°_89°
95°_87°
95°_84°
84°.950

94°_79°
71°.73°

(..8° _ 82 °

Tab. I. Balloon missions of the filter radiometers during
EASOE 91/92 including the number of instruments
used, the maximum altitude, and zenith angles at
which measurements were made.

5.1 Evaluation of the measurext data

As an example, Figure 4 shows unprocessed data of a
near UV radiometer taken every 2 seconds during the balloon

flight on December 1991 together with the flight profile versus
the flight time. Due to the rotation of the gondola which
occurs on time scales of one to ten minutes, the signals are

strongly influenced by shadowing and possibly also by
reflected light from the gondola. At least during the ascent and

during the descent when the frequency of the rotation of the
gondola is high, an upper and a lower envelope on the data
points can be identified: The upper limit shows the
contribution of the direct incidence of radiation including the

diffusive flux, and the lower limit represents signals with the
direct radiation blocked out providing inR_rmation on the

diffusive actinic flux separately.
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Fig. 4. Raw data of the near UV radiometer measured
during the balloon flight on December 1991

together with the flight profile versus the flight time

For the evaluation of the measurements a program was

designed which allows for separate determination of the

signal's mean as well as of its upper and lower limits. By this
procedure data which are influenced by shadowing or by
reflected light from other experiments aboard the gondola can
be omitted. Therefore, the data are evaluated several times

resulting in 30 sec average values for the upper and the lower
boundary of the signal omitting disturbed data points.
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5.2 Planned data interpretation

The available data set of actinic fluxes altows a detailed

examination of radiative processes in thc stratosphere. Due to
the wide range of zenith angles and altitudes at which

measurements were accomplished a broad test of the photon
flux models can bc carried out, e.g. with regard to the ratio of
direct to diffusive l]uxes. Since most of the measurements are

accomplished at zenith angles higher than 80 °, a validation of
the model in particular for twilight conditions at which

modelling of photon fluxes becomes difficult will be done
(Schiller ctal., 1992). When simulating the measurements by
model calculations, the influence of various parameters as the
solar zenith angle, the ozone profile, tim ground albedo, anti
the aerosol content on the actinic fluxes and hence on

photochemistry can bc studied. In particular for those flights
during which species were measured whose concentration is
driven by photochemistry, the interpretation using
photodissociation frequencies with regard to the actual flight
conditions is possible. From the link between the
measurements and the model, we expect to calculate
photodissociation frequencies fl_r many atmospheric species
more accurately. In forthcoming papers, wc will publish a
detailed analysis of the data with respect to these questions.
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